Search results for "chemical bonds"

showing 7 items of 7 documents

Halogen bonds in 2,5-dihalopyridine-copper(II) chloride complexes

2018

Ten coordination complexes obtained through a facile reaction between 2,5-dihalopyridines and copper(II) chloride (CuCl2) are characterized using single crystal X-ray diffraction. Two series of dihalopyridine complexes based on 2-chloro-5-X-pyridine and 2-bromo-5-X-pyridine (X = F, Cl, Br and I) were prepared to analyze the C–X2/X5⋯Cl–Cu halogen bonds (XB). The influence of X2- and X5-substituents on the respective interactions was examined by comparing them to the X2/X3⋯Cl–Cu XBs found in mono-substituted halopyridine complexes, (n-X-pyridine)2·CuCl2 (n = 2, 3 and X = Cl, Br and I). Varying the X5-halogens in (2,5-dihalopyridine)2·CuCl2, the C5–X5⋯Cl–Cu XBs follow the order F5 1 and they c…

010405 organic chemistryChemistrySubstituentchemistry.chemical_elementGeneral Chemistrykompleksiyhdisteet010402 general chemistryCondensed Matter Physics01 natural sciencesChlorideCopperchemical bonds0104 chemical scienceschemistry.chemical_compoundCrystallographykemialliset sidoksetHalogenmedicineCopper(II) chlorideGeneral Materials Sciencecoordination complexesPolarization (electrochemistry)Single crystalta116medicine.drugCrystEngComm
researchProduct

Orthorhombic polymorphs of twotrans-4-aminoazoxybenzenes

2002

The two isomeric compounds 4-amino-ONN-azoxybenzene [or 1-(4-aminophenyl)-2-phenyldiazene 2-oxide], i.e. the alpha isomer, and 4-amino-NNO-azoxybenzene [or 2-(4-aminophenyl)-1-phenyldiazene 2-oxide], i.e. the beta isomer, both C(12)H(11)N(3)O, crystallized from a polar solvent in orthorhombic space groups, and their crystal and molecular structures have been determined using X-ray diffraction. There are no significant differences in the bond lengths and valence angles in the two isomers, in comparison with their monoclinic polymorphs. However, the conformations of the molecules are different due to rotation along the Ar-N bonds. In the alpha isomer, the benzene rings are twisted by 31.5 (2)…

AzoxyValence (chemistry)X ray diffractionHydrogen bondStereochemistryCrystal structureChemical bondsGeneral MedicineCrystal structureGeneral Biochemistry Genetics and Molecular BiologyConformationsIsomersBond lengthCrystallographychemistry.chemical_compoundchemistryQuantum theoryMoleculeOrthorhombic crystal systemMolecular structureMonoclinic crystal systemActa Crystallographica Section C Crystal Structure Communications
researchProduct

The chemical bonds in CuH, Cu2, NiH, and Ni2 studied with multiconfigurational second order perturbation theory

1994

The performance of multiconfigurational second order perturbation theory has been analyzed for the description of the bonding in CuH, Cu2, NiH, and Ni2. Large basis sets based on atomic natural orbitals (ANOS) were employed. The effects of enlarging the active space and including the core‐valence correlation contributions have also been analyzed. Spectroscopic constants have been computed for the corresponding ground state. The Ni2 molecule has been found to have a 0+g ground state with a computed dissociation energy of 2.10 eV, exp. 2.09 eV, and a bond distance of 2.23 Å. The dipole moments of NiH and CuH are computed to be 2.34 (exp. 2.4±0.1) and 2.66 D, respectively. pou@uv.es ; merchan@…

Chemical BondsGeneral Physics and AstronomyDissociation EnergyDipole MomentsPerturbation Theory ; Chemical Bonds ; Configuration Interaction ; Copper Hydrides ; Nickel Hydrides ; Copper ; Nickel ; Electron Correlation ; Core Levels ; Dissociation Energy ; Dipole Moments ; Bond Lengths ; Diatomic MoleculesCore LevelsBond LengthsNickelPhysical and Theoretical ChemistryPerturbation theory:FÍSICA::Química física [UNESCO]Nickel HydridesDiatomic MoleculesElectronic correlationChemistryConfiguration interactionBond-dissociation energyDiatomic moleculeUNESCO::FÍSICA::Química físicaBond lengthConfiguration InteractionChemical bondCopper HydridesPerturbation TheoryElectron CorrelationAtomic physicsGround stateCopper
researchProduct

Ferrimagnetic Heisenberg chain; influence of a random exchange interaction

1985

We report on the magnetic behavior of ‘‘rigid’’ ferrimagnetic chains isolated in bimetallic complexes of the EDTA and ‘‘flexible’’ ones obtained in the amorphous variety. As shown by LAXS, the only noteworthy difference in the amorphous state is the random distribution of bond angles between nearest neighbors within chains. The ‘‘rigid’’ bimetallic chains in CoNi(EDTA)6H2O are described in terms of Heisenberg model with an exchange coupling J=−7.5 K. The behavior of the amorphous variety somewhat differs, following the law X=AT−0.8 typical of REHAC. A classical spin chain model involving a J distribution and alternating g factors allows to explain successfully the temperature dependence of …

Chemical BondsMagnetic PropertiesExchange InteractionsEdtaGeneral Physics and AstronomyNickel CompoundsMagnetic SusceptibilityFerrimagnetic MaterialsFerrimagnetism:FÍSICA [UNESCO]HydratesExchange Interactions ; Ferrimagnetic Materials ; Chains ; Heisenberg Model ; Amorphous State ; Chemical Bonds ; Magnetic Susceptibility ; Cobalt Compounds ; Nickel Compounds ; Hydrates ; Edta ; Ferrimagnetism ; Magnetic PropertiesBimetallic stripCondensed matter physicsChemistryHeisenberg modelExchange interactionUNESCO::FÍSICAAmorphous StateChainsMagnetic susceptibilityAmorphous solidMolecular geometryChemical bondFerrimagnetismHeisenberg ModelCobalt Compounds
researchProduct

Theoretical determination of the geometric and electronic structures of oligorylenes and poli(peri‐naphthalene)

1992

We present a theoretical investigation of the electronic structure of oligorylenes (from perylene to heptarylene, including also the naphthalene molecule) and their corresponding polymer poly(peri‐naphthalene) (PPN) using the nonempirical valence effective (VEH) method. The geometry of the unit cell used to generate the polymer is extrapolated from the PM3‐optimized molecular geometries of the longest oligorylenes. That geometry shows some bond alternation along the perimeter carbon chains and a bond length of ≊1.46 Å is calculated for the peri bonds connecting the naphthalene units. The VEH one‐electron energy level distributions calculated for oligorylenes are used to interpret the experi…

OptimizationChemical BondsBand gapStereochemistryExtrapolationElectric ConductorsGeometryGeneral Physics and AstronomyElectronic structureMolecular physicsEnergy LevelsMolecular orbitalPhysical and Theoretical ChemistryBand Structure:FÍSICA::Química física [UNESCO]Electronic band structurePeryleneFilmsValence (chemistry)Organic PolymersChemistryElectronic Structure ; Perylene ; Naphthalene ; Organic Polymers ; Unit Cell ; Geometry ; Extrapolation ; Optimization ; Chemical Bonds ; Carbon ; Chains ; Energy Levels ; Ionization Potential ; Affinity ; Band Structure ; Electric Conductors ; Films ; PyrolysisUnit CellChainsCarbonUNESCO::FÍSICA::Química físicaBond lengthIonization PotentialMolecular geometryElectronic StructureAffinityIonization energyNaphthalenePyrolysis
researchProduct

Synthesis and Characterisation of Chiral Triazole-Based Halogen-Bond Donors: Halogen Bonds in the Solid State and in Solution

2017

A general platform for the synthesis of various chiral halogen-bond (XB) donors based on the triazole core and the characterisation of factors that influence the strength of the halogen bond in the solid state and in solution are reported. The characterisation of XB donors in the solid state by X-ray crystallography and in solution by 1H NMR titration can be used to aid the design of new XB donors. We describe the first example of a XB between iodotriazoles and thioureas in solution. In addition, the enantiodiscrimination of acceptors in solution through halogen-bond participation is described.

TriazoleSolid-state010402 general chemistry01 natural scienceschemical bondsCatalysiskemialliset sidoksetchemistry.chemical_compoundNMR spectroscopyhalogensOrganic chemistryNMR-spektroskopiata116x-ray crystallographykemiallinen synteesiHalogen bondhalogeenit010405 organic chemistryOrganic ChemistryGeneral ChemistryCombinatorial chemistry0104 chemical scienceschemistryHalogenTitrationröntgenkristallografiachemical synthesisChemistry - A European Journal
researchProduct

Halogen bonds in 2,5-dihalopyridine-copper(II) chloride complexes

2018

Ten coordination complexes obtained through a facile reaction between 2,5-dihalopyridines and copperIJII) chloride (CuCl2) are characterized using single crystal X-ray diffraction. Two series of dihalopyridine complexes based on 2-chloro-5-X-pyridine and 2-bromo-5-X-pyridine (X = F, Cl, Br and I) were prepared to analyze the C–X2/X5⋯Cl–Cu halogen bonds (XB). The influence of X2- and X5-substituents on the respective interactions was examined by comparing them to the X2/X3⋯Cl–Cu XBs found in mono-substituted halopyridine complexes, (n-X-pyridine)2·CuCl2 (n = 2, 3 and X = Cl, Br and I). Varying the X5-halogens in (2,5-dihalopyridine)2·CuCl2, the C5–X5⋯Cl–Cu XBs follow the order F5 1 and they c…

kemialliset sidoksetcoordination complexeskompleksiyhdisteetchemical bonds
researchProduct